An artificial chemical reaction optimization algorithm for multiple-choice knapsack problem
نویسندگان
چکیده
Multiple-choice knapsack problem (MCKP) is a well-known NP-hard problem and it has a lot of applications in the real-world and theory. In this study, the Artificial chemical reaction optimization algorithm (ACROA) that uses integer string code is developed to solve MCKP. Four specific reaction operators are designed to implicate local and global search. A new penalty function that aims to force the algorithm search in both infeasible and feasible search space is suggested. The experiment on MCKP test set demonstrates that ACROA is superior to GA.
منابع مشابه
APPROXIMATE ALGORITHM FOR THE MULTI-DIMENSIONAL KNAPSACK PROBLEM BY USING MULTIPLE CRITERIA DECISION MAKING
In this paper, an interesting and easy method to solve the multi-dimensional knapsack problem is presented. Although it belongs to the combinatorial optimization, but the proposed method belongs to the decision making field in mathematics. In order to, initially efficiency values for every item is calculated then items are ranked by using Multiple Criteria Decision Making (MCDA). Finally, ite...
متن کاملBQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems
Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...
متن کاملA dynamic programming approach for solving nonlinear knapsack problems
Nonlinear Knapsack Problems (NKP) are the alternative formulation for the multiple-choice knapsack problems. A powerful approach for solving NKP is dynamic programming which may obtain the global op-timal solution even in the case of discrete solution space for these problems. Despite the power of this solu-tion approach, it computationally performs very slowly when the solution space of the pr...
متن کاملEMCSO: An Elitist Multi-Objective Cat Swarm Optimization
This paper introduces a novel multi-objective evolutionary algorithm based on cat swarm optimizationalgorithm (EMCSO) and its application to solve a multi-objective knapsack problem. The multi-objective optimizers try to find the closest solutions to true Pareto front (POF) where it will be achieved by finding the less-crowded non-dominated solutions. The proposed method applies cat swarm optim...
متن کاملA Robust Knapsack Based Constrained Portfolio Optimization
Many portfolio optimization problems deal with allocation of assets which carry a relatively high market price. Therefore, it is necessary to determine the integer value of assets when we deal with portfolio optimization. In addition, one of the main concerns with most portfolio optimization is associated with the type of constraints considered in different models. In many cases, the resulted p...
متن کامل